Sentinel-3 Reference Guide
This reference guide provides detailed information about Sentinel-3 data parameters and options available through the Copernicus Data Space Ecosystem.
Overview
Sentinel-3 is a constellation of two polar-orbiting satellites (Sentinel-3A and Sentinel-3B) carrying multiple instruments for ocean and land monitoring. The mission provides systematic measurements of Earth’s oceans, land, ice, and atmosphere.
Key Features: - Ocean and Land Colour Instrument (OLCI) - 21 spectral bands - Sea and Land Surface Temperature Radiometer (SLSTR) - thermal and optical channels - SAR Radar Altimeter (SRAL) - precise height measurements - Synergy products combining OLCI and SLSTR data - 27-day repeat cycle with daily global coverage - Systematic global coverage for ocean and land applications
Search Parameters
Parameter Types
When searching for Sentinel-3 data, parameters are passed in two ways:
Direct Parameters: Passed directly to the
search()
method -collection_name
- Mission/collection identifier -product_type
- Product type (OL_1_EFR___, OL_2_LFR___, etc.) -orbit_direction
- Orbit direction (ASCENDING/DESCENDING) -aoi_wkt
- Area of interest in WKT format -start_date
/end_date
- Temporal range -top
- Maximum number of resultsAttributes: Passed in the
attributes
dictionary -processingLevel
- Processing level (1, 2) -platform
- Satellite platform (S3A, S3B) -instrument
- Instrument type (OLCI, SLSTR, SRAL, SYNERGY, AUX) -orbitNumber
- Absolute orbit number -sensorMode
- Sensor mode (Earth Observation) -cloudCover
- Cloud cover percentage -status
- Product availability status -relativeOrbitNumber
- Relative orbit number -processingBaseline
- Processing baseline version -timeliness
- Data delivery timeliness
Basic Parameters
Collection Name
Use 'SENTINEL-3'
as the collection name.
results = searcher.search(collection_name='SENTINEL-3')
Geographic Parameters
Geometry
Region of Interest defined in Well Known Text (WKT) format with coordinates in decimal degrees (EPSG:4326).
# Polygon example
aoi_wkt = 'POLYGON((0 35, 10 35, 10 45, 0 45, 0 35))'
results = searcher.search(
collection_name='SENTINEL-3',
aoi_wkt=aoi_wkt
)
Product Parameters
Product Types
Sentinel-3 offers various product types organized by instrument:
OLCI (Ocean and Land Colour Instrument)
SLSTR (Sea and Land Surface Temperature Radiometer)
SRAL (SAR Radar Altimeter)
SYNERGY Products
# Search for OLCI Level 2 land products
results = searcher.search(
collection_name='SENTINEL-3',
product_type='OL_2_LFR___'
)
Processing Level
Available processing levels:
1
- Level 1 (TOA radiances, brightness temperatures)2
- Level 2 (Geophysical products)
# Search for Level 2 products
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'processingLevel': '2'}
)
Platform
Sentinel-3 constellation satellites:
S3A
- Sentinel-3A (launched 2016)S3B
- Sentinel-3B (launched 2018)
# Search for Sentinel-3A data only
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'platform': 'S3A'}
)
Instrument
Sentinel-3 instruments:
OLCI
- Ocean and Land Colour InstrumentSLSTR
- Sea and Land Surface Temperature RadiometerSRAL
- SAR Radar AltimeterSYNERGY
- Combined OLCI and SLSTR productsAUX
- Auxiliary data files
# Search for OLCI instrument data
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'instrument': 'OLCI'}
)
Sensor Mode
Sentinel-3 sensor mode:
Earth Observation
- Standard Earth observation mode
# Search for Earth observation mode
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'sensorMode': 'Earth Observation'}
)
Cloud Cover
Cloud Cover Percentage
Filter products by cloud cover percentage (0-100%). Applicable mainly to OLCI and SLSTR products.
# Search for products with less than 30% cloud cover
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'cloudCover': '[0,30]'}
)
Orbit Parameters
Orbit Direction
ASCENDING
- Satellite moving from south to northDESCENDING
- Satellite moving from north to south
results = searcher.search(
collection_name='SENTINEL-3',
orbit_direction='DESCENDING'
)
Orbit Number
Absolute orbit number (integer value or range).
# Single orbit
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'orbitNumber': '12345'}
)
# Orbit range
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'orbitNumber': '[12345,12350]'}
)
Relative Orbit Number
Relative orbit number (1-385 for Sentinel-3), representing the orbit within a repeat cycle.
# Search for relative orbit 100
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'relativeOrbitNumber': '100'}
)
Quality and Timeliness
Timeliness
Data delivery timeliness categories:
NR
- Near Real-TimeNT
- Non Time-CriticalST
- Slow Time-Critical
# Search for near real-time data
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'timeliness': 'NR'}
)
Processing Baseline
Processing baseline version (affects product quality and algorithms used).
# Search for specific processing baseline
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'processingBaseline': '03.00'}
)
Status
Product availability status:
ONLINE
- Immediately available for downloadOFFLINE
- Requires retrieval from long-term storageALL
- Both online and offline products
# Search for immediately available products
results = searcher.search(
collection_name='SENTINEL-3',
attributes={'status': 'ONLINE'}
)
Practical Examples
Example 1: Ocean Color Monitoring
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for OLCI ocean color products
results = searcher.search(
collection_name='SENTINEL-3',
product_type='OL_2_WFR___',
aoi_wkt='POLYGON((0 35, 10 35, 10 45, 0 45, 0 35))', # Mediterranean
start_date='2023-06-01',
end_date='2023-06-30',
attributes={
'instrument': 'OLCI',
'cloudCover': '[0,20]'
}
)
print(f"Found {len(results)} ocean color products")
Example 2: Land Surface Temperature
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for SLSTR land surface temperature products
results = searcher.search(
collection_name='SENTINEL-3',
product_type='SL_2_LST___',
aoi_wkt='POLYGON((10 40, 20 40, 20 50, 10 50, 10 40))', # Central Europe
start_date='2023-07-01',
end_date='2023-07-31',
attributes={
'instrument': 'SLSTR',
'timeliness': 'NT'
}
)
print(f"Found {len(results)} land surface temperature products")
Example 3: Altimetry for Ocean Monitoring
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for SRAL ocean altimetry products
results = searcher.search(
collection_name='SENTINEL-3',
product_type='SR_2_WAT___',
aoi_wkt='POLYGON((-10 30, 10 30, 10 50, -10 50, -10 30))', # Atlantic
start_date='2023-08-01',
end_date='2023-08-31',
attributes={
'instrument': 'SRAL',
'processingLevel': '2'
}
)
print(f"Found {len(results)} ocean altimetry products")
Example 4: Synergy Products for Vegetation
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for SYNERGY vegetation products
results = searcher.search(
collection_name='SENTINEL-3',
product_type='SY_2_VG1___',
aoi_wkt='POLYGON((0 40, 20 40, 20 60, 0 60, 0 40))', # Europe
start_date='2023-05-01',
end_date='2023-05-31',
attributes={
'instrument': 'SYNERGY',
'processingLevel': '2'
}
)
print(f"Found {len(results)} vegetation products")
Example 5: Fire Detection
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for SLSTR fire products
results = searcher.search(
collection_name='SENTINEL-3',
product_type='SL_2_FRP___',
aoi_wkt='POLYGON((-10 35, 5 35, 5 45, -10 45, -10 35))', # Spain/Portugal
start_date='2023-08-01',
end_date='2023-08-31',
attributes={
'instrument': 'SLSTR',
'timeliness': 'NR'
}
)
print(f"Found {len(results)} fire detection products")
Example 6: Multi-Platform Time Series
from phidown import CopernicusDataSearcher
import pandas as pd
searcher = CopernicusDataSearcher()
# Search for data from both platforms
s3a_results = searcher.search(
collection_name='SENTINEL-3',
product_type='OL_2_LFR___',
aoi_wkt='POLYGON((10 45, 15 45, 15 50, 10 50, 10 45))',
start_date='2023-01-01',
end_date='2023-12-31',
attributes={
'platform': 'S3A',
'cloudCover': '[0,30]'
}
)
s3b_results = searcher.search(
collection_name='SENTINEL-3',
product_type='OL_2_LFR___',
aoi_wkt='POLYGON((10 45, 15 45, 15 50, 10 50, 10 45))',
start_date='2023-01-01',
end_date='2023-12-31',
attributes={
'platform': 'S3B',
'cloudCover': '[0,30]'
}
)
# Combine results
all_results = pd.concat([s3a_results, s3b_results], ignore_index=True)
print(f"Sentinel-3A: {len(s3a_results)} products")
print(f"Sentinel-3B: {len(s3b_results)} products")
print(f"Total: {len(all_results)} products")
Search Optimization Tips
Choose Appropriate Instrument: Select the right instrument for your application (OLCI for ocean color, SLSTR for temperature, SRAL for altimetry).
Use Processing Level Wisely: Level 1 for raw data processing, Level 2 for ready-to-use geophysical products.
Filter by Cloud Cover: For optical instruments (OLCI, SLSTR), use cloud cover filtering to get clear observations.
Consider Timeliness: Use Near Real-Time (NR) for urgent applications, Non Time-Critical (NT) for better quality.
Optimize Temporal Range: Use appropriate date ranges based on the 27-day repeat cycle.
Use Relative Orbit Numbers: For consistent geometry in time series analysis.
Select Proper Product Type: Choose full resolution (FR) for detailed analysis, reduced resolution (RR) for overview applications.
Common Use Cases
Ocean Applications: - Ocean color monitoring: OL_2_WFR___, clear conditions - Sea surface temperature: SL_2_WST___, thermal channels - Ocean altimetry: SR_2_WAT___, precise measurements - Marine ecosystem monitoring: OL_2_WFR___, regular coverage
Land Applications: - Land surface temperature: SL_2_LST___, thermal infrared - Vegetation monitoring: SY_2_VG1___, SYNERGY products - Land altimetry: SR_2_LAN___, elevation measurements - Fire detection: SL_2_FRP___, active fire monitoring
Atmospheric Applications: - Aerosol monitoring: SY_2_AOD___, atmospheric products - Cloud detection: All optical products with cloud masks - Atmospheric correction: Level 2 products
Ice Applications: - Sea ice monitoring: SR_2_LAN_SI, specialized altimetry - Ice surface temperature: SL_2_LST___, polar regions - Ice extent mapping: OLCI and SLSTR products
Technical Specifications
OLCI (Ocean and Land Colour Instrument): - Spectral range: 400-1020 nm - Spatial resolution: 300 m (FR), 1.2 km (RR) - Swath width: 1270 km - Spectral bands: 21 bands - Applications: Ocean color, vegetation, atmosphere
SLSTR (Sea and Land Surface Temperature Radiometer): - Spectral range: 0.55-12 μm - Spatial resolution: 500 m (optical), 1 km (thermal) - Swath width: 1400 km - Spectral bands: 9 bands (6 optical, 3 thermal) - Applications: Sea/land surface temperature, fire detection
SRAL (SAR Radar Altimeter): - Frequency: 13.575 GHz (Ku-band), 5.41 GHz (C-band) - Footprint: ~300 m (ocean), ~1.65 km (land/ice) - Precision: ~3 cm (ocean), ~10 cm (land/ice) - Applications: Ocean/land topography, ice thickness
Orbital Characteristics: - Altitude: 814.5 km - Inclination: 98.65° - Repeat cycle: 27 days - Revisit time: <1 day (depending on latitude) - Local time: 10:00 AM (descending node)
Coverage: - Global coverage: Daily - Polar coverage: Multiple times per day - Equatorial coverage: Every 2-3 days - Ice-free ocean: Complete coverage every 27 days
For more detailed information about Sentinel-3 specifications and applications, refer to the official ESA Sentinel-3 documentation.