Landsat-8 Reference Guide
This reference guide provides detailed information about Landsat-8 data parameters and options available through the Copernicus Data Space Ecosystem.
Overview
Landsat-8 is an Earth observation satellite launched in 2013, carrying two primary instruments for systematic land monitoring. The mission continues the Landsat program’s legacy of providing consistent, high-quality multispectral imagery for land use, land cover change detection, and environmental monitoring.
Key Features: - Operational Land Imager (OLI) - 9 spectral bands including coastal/aerosol band - Thermal Infrared Sensor (TIRS) - 2 thermal infrared bands - 16-day repeat cycle with global coverage - 30-meter spatial resolution for multispectral bands - 100-meter spatial resolution for thermal bands - 15-meter panchromatic band for image sharpening
Search Parameters
Parameter Types
When searching for Landsat-8 data, parameters are passed in two ways:
Direct Parameters: Passed directly to the
search()
method -collection_name
- Mission/collection identifier -product_type
- Product type (L1GT, L1T, L1TP, L2SP) -aoi_wkt
- Area of interest in WKT format -start_date
/end_date
- Temporal range -top
- Maximum number of resultsAttributes: Passed in the
attributes
dictionary -processingLevel
- Processing level (LEVEL1, LEVEL2, etc.) -platform
- Satellite platform (LANDSAT-8) -instrument
- Instrument type (OLI_TIRS) -orbitNumber
- Absolute orbit number -sensorMode
- Sensor mode (DEFAULT) -cloudCover
- Cloud cover percentage -status
- Product availability status -organisationName
- Data provider (ESA, USGS) -path
- WRS-2 path number -row
- WRS-2 row number -sunAzimuth
- Sun azimuth angle -sunElevation
- Sun elevation angle
Basic Parameters
Collection Name
Use 'LANDSAT-8-ESA'
as the collection name.
results = searcher.search(collection_name='LANDSAT-8-ESA')
Geographic Parameters
Geometry
Region of Interest defined in Well Known Text (WKT) format with coordinates in decimal degrees (EPSG:4326).
# Polygon example
aoi_wkt = 'POLYGON((-120 35, -110 35, -110 45, -120 45, -120 35))'
results = searcher.search(
collection_name='LANDSAT-8-ESA',
aoi_wkt=aoi_wkt
)
Product Parameters
Product Types
Landsat-8 offers various product types with different processing levels:
# Search for Level 2 surface reflectance products
results = searcher.search(
collection_name='LANDSAT-8-ESA',
product_type='L2SP'
)
Processing Level
Available processing levels:
LEVEL1
/LEVEL1GT
- Level 1 Systematic Terrain CorrectionLEVEL1T
- Level 1 Precision Terrain CorrectionLEVEL1TP
- Level 1 Precision and Terrain CorrectionLEVEL2
/LEVEL2SP
- Level 2 Surface Reflectance
# Search for Level 2 products
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={'processingLevel': 'LEVEL2'}
)
Platform
Landsat-8 platform:
LANDSAT-8
- Landsat-8 satellite (launched 2013)
# Search for Landsat-8 data
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={'platform': 'LANDSAT-8'}
)
Instrument
Landsat-8 instrument:
OLI_TIRS
- Combined Operational Land Imager and Thermal Infrared Sensor
# Search for OLI/TIRS data
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={'instrument': 'OLI_TIRS'}
)
Sensor Mode
Landsat-8 sensor mode:
DEFAULT
- Standard Earth observation mode
# Search for default sensor mode
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={'sensorMode': 'DEFAULT'}
)
Cloud Cover
Cloud Cover Percentage
Filter products by cloud cover percentage (0-100%).
# Search for products with less than 20% cloud cover
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={'cloudCover': '[0,20]'}
)
WRS-2 Path/Row Parameters
Path and Row
Landsat-8 uses the Worldwide Reference System-2 (WRS-2) for systematic coverage:
path
- WRS-2 path number (1-233)row
- WRS-2 row number (1-248)
# Search for specific path/row
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={
'path': '44',
'row': '34'
}
)
Orbit Parameters
Orbit Number
Absolute orbit number (integer value or range).
# Single orbit
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={'orbitNumber': '12345'}
)
# Orbit range
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={'orbitNumber': '[12345,12350]'}
)
Solar Angle Parameters
Sun Azimuth and Elevation
Solar illumination conditions during image acquisition:
sunAzimuth
- Sun azimuth angle in degreessunElevation
- Sun elevation angle in degrees
# Search for optimal solar conditions
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={
'sunElevation': '[30,90]', # High sun elevation
'sunAzimuth': '[120,240]' # Southern illumination
}
)
Data Provider
Organisation Name
Data provider organizations:
ESA
- European Space AgencyUSGS
- United States Geological Survey
# Search for USGS-provided data
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={'organisationName': 'USGS'}
)
Quality and Status
Status
Product availability status:
ONLINE
- Immediately available for downloadOFFLINE
- Requires retrieval from long-term storageALL
- Both online and offline products
# Search for immediately available products
results = searcher.search(
collection_name='LANDSAT-8-ESA',
attributes={'status': 'ONLINE'}
)
Practical Examples
Example 1: Agricultural Monitoring
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for surface reflectance products over agricultural area
results = searcher.search(
collection_name='LANDSAT-8-ESA',
product_type='L2SP',
aoi_wkt='POLYGON((-100 40, -95 40, -95 45, -100 45, -100 40))', # Midwest US
start_date='2023-06-01',
end_date='2023-08-31',
attributes={
'cloudCover': '[0,10]',
'sunElevation': '[45,90]'
}
)
print(f'Found {len(results)} agricultural monitoring products')
Example 2: Urban Heat Island Analysis
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for thermal infrared data for urban analysis
results = searcher.search(
collection_name='LANDSAT-8-ESA',
product_type='L2SP',
aoi_wkt='POLYGON((-74.25 40.5, -73.7 40.5, -73.7 40.9, -74.25 40.9, -74.25 40.5))', # NYC
start_date='2023-07-01',
end_date='2023-07-31',
attributes={
'cloudCover': '[0,15]',
'instrument': 'OLI_TIRS'
}
)
print(f'Found {len(results)} urban thermal products')
Example 3: Forest Change Detection
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for specific path/row for consistent geometry
results = searcher.search(
collection_name='LANDSAT-8-ESA',
product_type='L2SP',
start_date='2020-01-01',
end_date='2023-12-31',
attributes={
'path': '226',
'row': '62', # Amazon region
'cloudCover': '[0,20]',
'processingLevel': 'LEVEL2'
}
)
print(f'Found {len(results)} forest monitoring products')
Example 4: Coastal Water Quality
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for coastal aerosol band data
results = searcher.search(
collection_name='LANDSAT-8-ESA',
product_type='L2SP',
aoi_wkt='POLYGON((-81 24, -80 24, -80 26, -81 26, -81 24))', # Florida Keys
start_date='2023-01-01',
end_date='2023-12-31',
attributes={
'cloudCover': '[0,5]',
'bands': '3' # Coastal/aerosol band
}
)
print(f'Found {len(results)} coastal water quality products')
Example 5: Seasonal Vegetation Analysis
from phidown import CopernicusDataSearcher
import pandas as pd
searcher = CopernicusDataSearcher()
# Search for multi-seasonal data
seasons = [
('Spring', '2023-03-01', '2023-05-31'),
('Summer', '2023-06-01', '2023-08-31'),
('Fall', '2023-09-01', '2023-11-30')
]
all_results = []
for season_name, start_date, end_date in seasons:
results = searcher.search(
collection_name='LANDSAT-8-ESA',
product_type='L2SP',
aoi_wkt='POLYGON((-106 39, -105 39, -105 40, -106 40, -106 39))', # Colorado
start_date=start_date,
end_date=end_date,
attributes={
'cloudCover': '[0,15]',
'path': '33',
'row': '32'
}
)
results['season'] = season_name
all_results.append(results)
combined_results = pd.concat(all_results, ignore_index=True)
print(f'Found {len(combined_results)} seasonal products')
Example 6: Solar Angle Optimization
from phidown import CopernicusDataSearcher
searcher = CopernicusDataSearcher()
# Search for optimal solar illumination conditions
results = searcher.search(
collection_name='LANDSAT-8-ESA',
product_type='L1TP',
aoi_wkt='POLYGON((-110 35, -105 35, -105 40, -110 40, -110 35))', # Utah
start_date='2023-05-01',
end_date='2023-09-30',
attributes={
'cloudCover': '[0,10]',
'sunElevation': '[50,90]', # High sun angle
'sunAzimuth': '[150,210]' # Southern aspect
}
)
print(f'Found {len(results)} optimally illuminated products')
Search Optimization Tips
Use Appropriate Processing Level: L1TP for geometric accuracy, L2SP for atmospheric correction.
Filter by Cloud Cover: Essential for optical analysis - use strict thresholds for quantitative work.
Consider Solar Angles: High sun elevation reduces shadows, specific azimuth angles optimize illumination.
Use Path/Row for Consistency: Same path/row ensures consistent viewing geometry for time series.
Optimize Temporal Windows: Account for 16-day repeat cycle and seasonal variations.
Select Proper Bands: Use coastal/aerosol band for atmospheric studies, thermal bands for temperature.
Consider Data Provider: USGS typically provides the most complete archive.
Common Use Cases
Land Cover Mapping: - Surface reflectance products: L2SP with low cloud cover - Multi-seasonal data for phenology - Consistent path/row for change detection
Agricultural Applications: - NDVI/vegetation indices: Bands 4 (red) and 5 (NIR) - Crop stress monitoring: Thermal bands 10 and 11 - Irrigation mapping: SWIR bands 6 and 7
Water Quality Monitoring: - Coastal/aerosol band: Band 1 for atmospheric correction - Turbidity assessment: Visible bands 2, 3, 4 - Algal bloom detection: Red edge simulation
Urban Studies: - Urban heat islands: Thermal bands with high spatial detail - Impervious surface mapping: SWIR and thermal combinations - Air quality: Coastal/aerosol band
Forest Monitoring: - Deforestation detection: Multi-temporal L2SP products - Fire mapping: Thermal anomalies in bands 10 and 11 - Health assessment: Red edge proxy using NIR/red ratio
Geological Applications: - Mineral mapping: SWIR bands 6 and 7 - Rock type discrimination: Band combinations - Structural geology: Panchromatic band for detail
Technical Specifications
OLI (Operational Land Imager): - Spectral range: 0.43-1.38 μm - Spatial resolution: 30 m (multispectral), 15 m (panchromatic) - Swath width: 185 km - Spectral bands: 9 bands including coastal/aerosol - Radiometric resolution: 12-bit
TIRS (Thermal Infrared Sensor): - Spectral range: 10.6-12.51 μm - Spatial resolution: 100 m (resampled to 30 m) - Swath width: 185 km - Spectral bands: 2 thermal infrared bands - Radiometric resolution: 12-bit
Orbital Characteristics: - Altitude: 705 km - Inclination: 98.2° - Repeat cycle: 16 days - Revisit time: 16 days - Local time: 10:00 AM (descending node) - WRS-2 system: 233 paths × 248 rows
Spectral Bands:
Coverage: - Global land coverage: Every 16 days - Scene size: 185 × 185 km - Daily imaging capacity: ~400 scenes - Archive: February 2013 to present
For more detailed information about Landsat-8 specifications and data processing, refer to the official USGS Landsat documentation. - Applications: Ocean/land topography, ice thickness
Orbital Characteristics: - Altitude: 814.5 km - Inclination: 98.65° - Repeat cycle: 27 days - Revisit time: <1 day (depending on latitude) - Local time: 10:00 AM (descending node)
Coverage: - Global coverage: Daily - Polar coverage: Multiple times per day - Equatorial coverage: Every 2-3 days - Ice-free ocean: Complete coverage every 27 days
For more detailed information about Sentinel-3 specifications and applications, refer to the official ESA Sentinel-3 documentation.